M1.		(a)	(i)	1.	Oxygen taken up/used (by woodlouse);	
			2.		Carbon dioxide (given out) is absorbed by solution/potassium hydroxide;	
			3.		Decrease/change in pressure; Reference to vacuum negates last marking point Reject reference to pressure increasing inside tube	3
		(ii)	1.		Distance (drop moves) and time;	
			2.		Mass of woodlouse;	
			3.		Diameter/radius/bore of tubing/lumen/cross-sectional area; If answer refers to measuring volume using the syringe allow 2 max –	
					one mark for measuring volume; one mark for mass of woodlouse;	
						3
	(b)	b) 1.2.3.	Le	ss/	no proton/H ⁺ movement so less/no ATP produced;	
					released from electron transport/redox reactions/energy not to produce ATP is released as heat;	
					gen used as final electron acceptor/combines with trons (and protons);	3
M2.		(a)	X =	Ca	rbon dioxide;	
		Y =	Y = Acetyl coenzyme A; (ACCEPT Acetyl CoA)			
			Z÷	= V	Vater;	3

- (b) (i) Cytoplasm;
 - (ii) Mitochondrion; (IGNORE named part)

Page 1 of 10

[9]

1

1

- (c) <u>On the diagram:</u>
 - (i) **'A'** (ATP used) <u>between</u> glucose and triose phosphate;
 - (ii) 'B' <u>Any two from</u>:

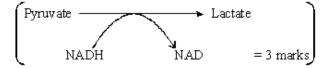
(ATP produced) – between triose phosphate and pyruvate; in Krebs cycle; from electron carriers (to right of bracket & not below grey box);

(d) Any three from:

Source of energy/of phosphate; Active transport; Phagocytosis / endo- /exocytosis / pinocytosis; Bile production; Cell division / mitosis; Synthesis of: glycogen; protein / enzymes; DNA / RNA; lipid / cholesterol; urea;

max 3

max 4


1

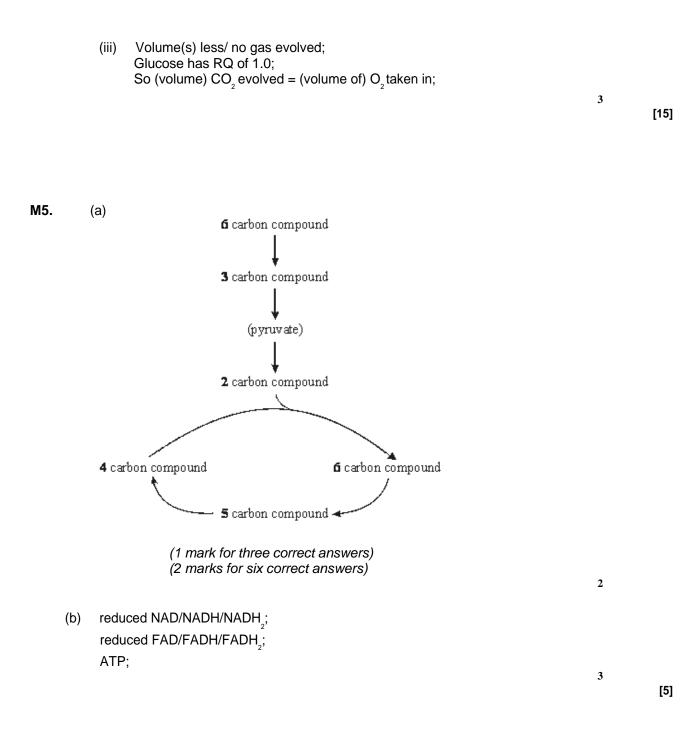
max 2

(e) <u>Any **four** from</u>: Forms lactate; [extras $-C_2H_2OH / CO_2 - CANCEL]$

Use of reduced NAD / NADH;

Regenerates NAD;

NAD can be re-used to oxidise more respiratory substrate / correct e.g./ allows glycolysis to continue; Can still release energy/form ATP when oxygen in short supply/when no oxygen;


[15]

1

	(b) (c)	ADI P / red oxy	pyruvate; ADP; P / inorganic phosphate; reduced NAD; oxygen; larger surface area for electron carrier system / oxidative		
	(-)		osphorylation; provide ATP / energy for contraction;	2	[5]
M4.		(a)	(i) glycolysis;	1	
		(ii)	oxygen removed from pyruvate/ reduced NAD is oxidised/ donates hydrogen/donates electrons;	1	
		(iii)	allows NAD to be recycled/re-formed; so that glycolysis/described/ candidates answer to (i) can proceed/ so that (more) glucose can be converted to pyruvate/so that process X can continue;	2	
	(b)	(i)	ATP formed/used; pyruvate formed/reduced; NAD/reduced NAD; glycolysis involved/two stage process;	2 max	
		(ii)	ethanol/alcohol formed by yeast, lactate (<i>allow lactic acid)</i> by muscle cell; CO ₂ released by yeast but not by muscle cell;		
			(note: need both parts of the comparison for the mark)	2	
	(c)	(i)	allows anomalies to be identified/increases reliability (of means/ averages/results); allows use of statistical test;	2	
		(ii)	$\frac{38.3 + 27.6 + 29.4}{3} = 31.8/31.76/31.77;$ <i>(units not required)</i>		
			÷ (5 × 60) = 0.106/ 0.11/ 0.1; (correct answer scores two marks, however derived.) (correct mean volume (31.8 cm ³) however derived scores 1 mark)		
				2	

Page 3 of 10

M6.

Page 4 of 10

4

	(b)	(i)	pyruvate/succinate/any suitable Krebs cycle substrate;	1	
		(ii)	ADP and phosphate forms ATP; oxygen used to form water / as the terminal acceptor;	2	
		(iii)	Y X W Z; order of carriers linked to sequence of reduction / reduced carriers cannot pass on electrons when inhibited;	2	[9]
M7.		(a)	Electrons transferred down electron transport chain;		
		Pro	vide energy to take protons/H $^{+}$ into space between membranes;		
			tons/H⁺ pass back, through membrane/into matrix/through Pase;		
		Energy used to combine ADP and phosphate/to produce ATP; Accept: alternatives for electron transport chain.			
	(b)	(i)	Prevent damage to mitochondria caused by water/osmosis/differences in water potential; Accept: other terms that imply damage e.g. shrink/burst	1	
		(ii)	Glucose is used/broken down during glycolysis;		
			Breakdown of glucose/glycolysis in cytoplasm/not in mitochondria; Accept: 'glucose is converted to pyruvate' for description of breakdown		
			Glucose cannot cross mitochondrial membrane/does not enter mitochondria;		
			Accept: only pyruvate can	2 max	
		(iii)	Terminal/final acceptor (in electron transport chain)/used to make water;		
			Could be shown by symbols	1	[7]

M8. (a) (i) 2 (molecules)

(ii)

Cannot pass out of cell; Quickly/easily broken down (hydrolysed) / broken down in a on-step reaction / immediate source of energy; Stores / releases <u>small</u> amounts of energy; Do not credit "producing energy"

(b) Formed when reduced NAD used to <u>reduce</u> / donate H ions to pyruvate / convert pyruvate to ethanol;

(c) R.Q. =
$$\frac{amount CO_2 \ produced}{amount O_2 \ used}$$
;
Anaerobic respiration occurring;
Produces CO₂ but doesn't use O₂ / more CO₂ produced than O₂ used;

max 2

1

max 2

1

[6]

M9.

P = 3; (a) (i) **Q** = acetylcoenzyme A; 2 (ii) 36 ATP, however derived = 2 marks 30 ATP, however derived = 1 mark 2 (iii) Correct statement in the context of aerobic respiration or anaerobic respiration concerning: Oxygen as terminal hydrogen/electron acceptor; Operation of electron transport chain/ oxidative phosphorylation; Fate of pyruvate; Krebs cycle; Significance of ATP formed in glycolysis; max. 3 (b) (i) Thick walls exclude oxygen; Produced by photosynthetic cells (of fern and Anabaena); Contain no chlorophyll so do not photosynthesise; Do not produce oxygen; Oxygen would inhibit nitrogen fixation process; max. 3

(ii) Decomposers/ bacteria/fungi/saprobionts (in fields); Convert protein/organic nitrogen (in cells of fern) into ammonium ions (allow ammonia); Ammonium ions (ammonia) converted to nitrite; Nitrite converted to nitrate; Allow 1 mark for $NH_3^+/NH_4^+ \rightarrow NO3_3^-$ By nitrifying bacteria / correctly named; Nitrate used to form protein / amino acids in rice; Link between application of fern and protein/cells of rice; Decomposers respire (suitable substrate) and release CO₂; Used in photosynthesis by rice; max. 5 [15] M10. (a) Krebs cycle/link reaction/pyruvate to acetylcoenzyme A; Q Accept valid alternative for any of these steps. 1 (b) (Respiratory reactions controlled by) enzymes; Rate decreases as less kinetic energy/fewer collisions (between substrate and active site) fewer E-S complexes formed; 2 Requires hydrogen/electrons/is reduction; (c) Hydrogens from reduced NAD/reduced NAD reduces (pyruvic acid)/reduced NAD oxidised; Information may be on diagram 2 Respiring anaerobically; (d) (Anaerobic respiration/respiration with nitrogen) less efficient/produces less ATP: More anaerobic respiration/more glucose/substrate must be respired to produce same amount of ATP (so more carbon dioxide produced); 3

[8]

M11.	(a)	pyruvate;	1	
(b	Kre	bs cycle;	1	
(c	oxy tran elec acc forn	P formed as electrons pass along transport chain; gen is terminal electron acceptor / accepts electrons from electron isport chain; ctrons cannot be passed along electron transport chain if no O_2 to ept them; ns H ₂ O / accepts H ⁺ from reduced NAD/FAD / oxidises reduced D/FAD;	3 max	[5]
M12.	(a) Glu	Glycolysis; cose and pyruvate/pyruvic acid;	2	
(b		nt-independent reaction; ulose bisphosphate/RuBP and carbon dioxide;	2	
(c)		nt-independent reaction; ose phosphate and glucose/hexose; Q Do not accept sugar or carbohydrate as alternative for glucose	2	[6]
M13. (b)	(a) 2 3 4 5 6 1 2 3 4 5	1 Sample of ground beetles captured and counted (a); Released and second sample captured; Count total number of beetles (B) and number marked (b); Total population (A) estimated from the relationship $\frac{a}{A} = \frac{b}{B}$; Refinement to ensure greater accuracy e.g. large number/ marking in position such that does not affect survival; Mowing prevents growth of woody plants; By cutting off growing point; The longer the interval between mowing, the further succession can progress; With frequent mowing diversity of plants will be less; Fewer insect inhabitants/niches available; Q Since this is an ecological question, use of appropriate ecological terminology is expected. Credit such terms as producer, consumer, habitat, and niche. Do not credit inappropriate terminology such as "places" to live and "fighting for food".	5 max	

(c)	1 2 3 4 5 6	Higher carbon dioxide concentration at night/during darkness; Photosynthesis only takes place during light; Photosynthesis removes carbon dioxide and respiration adds carbon dioxide; Respiration taking place throughout 24 hours; Quantitative consideration such as that in plants overall photosynthetic rate greater than respiration rate; Human effect such as additional carbon dioxide from heavy daytime traffic/street lighting could prolong photosynthesis;	5 max	[15]
M14.		(more cristae / larger surface area) for electron transport chain / e enzymes for ATP production/oxidative phosphorylation; scle cells use more ATP (than skin cells)(not just more respiration);	2	
(b)	(i)	pyruvate;	1	
	(ii)	carbon dioxide formed / decarboxylation; hydrogen released / reduced NAD formed; acetyl coenzyme A produced;	2 max	
(c)	H⁺ i carr ene ene usir H⁺ /	D/FAD reduced / hydrogen attached to NAD/FAD; ons/electrons transferred from coenzyme to coenzyme/ ier to carrier / series of redox reactions; rgy made available as electrons passed on; rgy used to synthesise ATP from ADP and phosphate / ng ATPase; protons passed into intermembrane space; protons flow back through stalked particles/enzyme;	3 max	[0]
				[8]